Document relevance is a key challenge for social media research. The specific problem of “word sense disambiguation” is widespread. If I am interested in “banks” where money is stored, I want to exclude mentions of river banks. If I am “Delta” airlines, I do not want to see social data about Delta faucets, Delta force, or those pesky river deltas. If I run a sports team like the Pittsburgh Penguins, the massive numbers of Facebook posts and Tweets about flightless but adorable birds are equally problematic. There are very few social media analytics projects that can easily avoid the challenge of sorting relevant and irrelevant documents.
At Texifter, we have refined a powerful set of tools and techniques for doing word sense disambiguation. This 5-minute video uses the example of Governor Chris Christie to illustrate how the five pillars of text analytics can help anyone to identify and remove irrelevant documents from an ambiguous social data collection. The principles are very similar to spam filtering in email; we use the same mathematics. Using DiscoverText, we argue an individual or small collaborative team can create a custom machine classifier for the task in just a few hours. Someday, we hope to get this down to a few minutes.